8 research outputs found

    Multiple roots of systems of equations by repulsion merit functions

    Get PDF
    In this paper we address the problem of computing multiple roots of a system of nonlinear equations through the global optimization of an appropriate merit function. The search procedure for a global min- imizer of the merit function is carried out by a metaheuristic, known as harmony search, which does not require any derivative information. The multiple roots of the system are sequentially determined along several ite- rations of a single run, where the merit function is accordingly modified by penalty terms that aim to create repulsion areas around previously computed minimizers. A repulsion algorithm based on a multiplicative kind penalty function is proposed. Preliminary numerical experiments with a benchmark set of problems show the effectiveness of the proposed method.Fundação para a Ciência e a Tecnologia (FCT

    Constrained dogleg methods for nonlinear systems with simple bounds

    Get PDF
    We focus on the numerical solution of medium scale bound-constrained systems of nonlinear equations. In this context, we consider an affine-scaling trust region approach that allows a great flexibility in choosing the scaling matrix used to handle the bounds. The method is based on a dogleg procedure tailored for constrained problems and so, it is named Constrained Dogleg method. It generates only strictly feasible iterates. Global and locally fast convergence is ensured under standard assumptions. The method has been implemented in the Matlab solver CoDoSol that supports several diagonal scalings in both spherical and elliptical trust region frameworks. We give a brief account of CoDoSol and report on the computational experience performed on a number of representative test problem

    Enhancing power transfer capability through flexible AC transmission system devices: a review

    No full text
    corecore